اشتقاق ها و میانگین پذری دوگان دوم جبرهای باناخ
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان - دانشکده ریاضی
- نویسنده غلامعلی علیزاده
- استاد راهنما غلامرضا رضایی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
در این رساله اشتقاق و ضرب اول و دوم آرنس را برای جبر های باناخ معرفی می کنیم.در حالت خاصی که دوگان دوم جبر باناخ مجهز به ضرب آرنس باشد در مورد اینکه محت چه شرایطی ترانهاده ی دوم اشتقاق d یک اشتقاق است ، بحث می کنیم. نشان می دهیم که میانگین پذری دوگان دوم جبر باناخ ، میانگین پذری جبر باناخ را نتیجه می دهد اگر جبر باناخ ایدال چب دوگان دوم خودش باشد یا جبر باناخ مورد نظر جبر باناخ دوگان باشد یا هر اشتقاق از جبر باناخ بتوی دوگان دوم آن فشرده ی ضعیف باشد.
منابع مشابه
مرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ
در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.
متن کاملتوسعه اشتقاق ها و n-میانگین پذیری ضعیف دوگان دوم جبرهای باناخ
جبر باناخ a را n-میانگین پذیر ضعیف می نامیم هرگاه هر اشتقاق از a بتوی n-امین دوگان آن داخلی باشد. در این پایان نامه ابتدا نشان داده ایم که تحت چه شرایطی الحاقی دوم یک اشتقاق، یک اشتقاق است. سپس ثابت کرده ایم برای nهای بزرگ تر از 1، n-میانگین پذیری ضعیف **n، a-میانگین پذیری ضعیف a را نتیجه می دهد.اما برای حالت n=1 نشان داده ایم که تحت برخی شرایط می توان از میانگین پذیری ضعیف **a، میانگین پذیری ض...
15 صفحه اولمیانگین پذیری و میانگین پذیری ضعیف دوگان دوم جبرهای باناخ
یکی از نظریه ها که مورد علاقه ریاضیدانان جهت تحقیق و مطالعه در گرایش آنالیز هارمونیک می باشد، نظریهمیانگین پذیری جبرهای باناخ است. اگرaیک جبر باناخ باشد می دانیمa^(**)نیز به همراه دو نوع ضرب به نام ضرب های آرنز اول و آرنز دوم به یک جبر باناخ تبدیل می شود، حال این سوال مطرح می شود که آیا ارتباطی بین میانگین پذیری این دو جبر باناخ هست؟ یعنی اگر a میانگین پذیر باشد، آیا دوگان دوم آن میانگین پذی...
15 صفحه اولمیانگین پذیری جبرهای باناخ دوگان
گوییم جبر باناخ a دوگان است اگر یک زیر مدول بسته a_* از a^* موجود باشد که a=?(a_*)?^*. رده جبرهای باناخ دوگان شامل تمام w^* جبرهاست و همچنین شامل تمام جبرهای m(g) برای گروههای موضعاً فشرده g و تمام جبرهای l(e) برای فضای باناخ بازتابی e است. ابتدا نشان میدهیم تحت شرایطی معین یک جبر باناخ دوگان میانگین پذیر، یک جبر باناخ ابر- میانگین پذیر و بنابراین متناهی البعد است. سپس دو مفهوم میانگین پذیری ، ...
15 صفحه اولاشتقاق های مکرر دوگان جبرهای باناخ
جبر باناخ n، a میانگین پذیر ضعیف است هرگاه اولین گروه کوهمولوژی پیوسته a با ضرایب درn اُمین دوگان a صفر شود. همچنین a میانگین پذیر دائماً ضعیف است، هرگاه برای هر n جبر n، a میانگین پذیر ضعیف باشد. در فصل سوم ارتباط بین m -میانگین پذیری ضعیف و n- میانگین پذیری ضعیف را برای دو عدد مجزای m و n بررسی می کنیم. همچنین نشان می دهیم که تحت چه شرایطی جبرهای باناخ مختلف، n -میانگین پذیر ضعیف هستند. در فص...
15 صفحه اولمیانگین پذیری تقریبی جبرهای باناخ و دوگان دوم آنها
میانگین پذیری هرکدام از جبرهای باناخ که در پایان نامه ذکر شده است، مستلزم متناهی بودن آن است. در سال های اخیر مسائل قابل توجهی در رابطه با میانگین پذیری تقریبی حل نشده باقی مانده است. دراین پایان نامه یک روش کلی ارائه می دهیم که نشان می دهد جبرهای باناخ بدون همانی تقریبی کران دار نمی توانند میانگین پذیر تقریبی باشند و از آن برای میانگین پذیر تقریبی نبودن برخی ار جبرهای باناخ استفاده می کنیم. بر...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023